
Dainty Documentation

Mark van Renswoude

Sep 13, 2020





Table of contents

1 Introduction 1
1.1 Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Getting started 3
2.1 Including the source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Reading a dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Writing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 FieldName and ParamName attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

i



ii



CHAPTER 1

Introduction

Dainty is a simple object mapper for Delphi.

Heavily inspired by Dapper, Dainty aims to provide a lightweight layer to map objects from a TDataSet descendant or
to TParams. It is intentionally not a fully fledged ORM framework.

Dainty has been written and tested primarily in Delphi XE2 and 10.2.

1.1 Key features

• Read rows from a DataSet into objects

• Fill TParams using an object

• Helper methods for single row results

• Object mapping cache to reduce runtime RTTI overhead

1

https://github.com/StackExchange/Dapper


Dainty Documentation

2 Chapter 1. Introduction



CHAPTER 2

Getting started

2.1 Including the source

Dainty comes with runtime packages for a few Delphi versions which you can build to use the dcu’s in your project.
There is no designtime package or components, so you can also include the source directly if desired in which case
you need both Dainty.pas and Dainty.Converter.Default.pas.

Dainty provides two ways to use it. The easiest way is to use the included class helpers and directly call Dainty’s
methods on any TDataSet or TParams instance. This is the method all the examples below will use. If however you
have a conflict in class helpers and can’t use them, you can instead call the same methods directly using the TDainty
class instead and pass the dataset or params as the first parameter.

2.2 Reading a dataset

Use Rows to iterate through a dataset and map each row to an object.

uses
Dainty;

type
TCustomerRow = class
public
CustomerID: Integer;
FullName: string;
Active: Boolean;

end;

var
query: TIBQuery;
customer: TCustomerRow;

(continues on next page)

3



Dainty Documentation

(continued from previous page)

begin
query := TIBQuery.Create(nil);
try
query.Database := MyDatabase;
query.Transaction := MyTransaction;
query.SQL.Text := 'select CustomerID, FullName, Active from Customer';
query.Open;

for customer in query.Rows<TCustomerRow> do
begin

{ You can read the customer properties here. Note that you do not have ownership
of the objects when using Rows<> and must not keep a reference, as they are
destroyed during and after the loop.

The author is of the opinion that 'database' objects should not be used as
→˓business

objects but instead mapped to and from, to provide separation of the domains.
However, Dainty does not enforce this and you can use query.List<> instead to
get ownership of the list. }

end;
finally
FreeAndNil(query);

end;
end;

Note that the customer object is destroyed right before the next iteration or after the loop is finished. If you want to
keep a reference to the customer object, use List<> instead to get a list of objects which you have to Free yourself.

If you only need one row there are a few helpers you can use:

GetFirst will retrieve one row from the dataset and expects at least one row to be present. GetSingle is similar, but in
addition it verifies that there is exactly one row and not more. Both have an OrDefault version which will not throw
an exception but return nil instead if the requirements are not met. An example:

var
query: TIBQuery;
oldestCustomer: TCustomerRow;

begin
query := TIBQuery.Create(nil);
try
query.Database := MyDatabase;
query.Transaction := MyTransaction;
query.SQL.Text := 'select CustomerID, FullName, Active from Customer order by Age

→˓desc rows 1';
query.Open;

oldestCustomer := query.GetFirstOrDefault<TCustomerRow>;
try

{ ... }
finally

FreeAndNil(oldestCustomer);
end;

finally
FreeAndNil(query);

end;
(continues on next page)

4 Chapter 2. Getting started



Dainty Documentation

(continued from previous page)

end;

Note that you must destroy the resulting object yourself in this scenario.

For full control over the dataset position and the resulting object, GetRowReader<> is available.

2.3 Writing parameters

uses
Dainty;

type
TCustomerParams = class
public
FullName: string;
Active: Boolean;

end;

var
query: TIBQuery;
customParams: TCustomerParams;

begin
query := TIBQuery.Create(nil);
try
query.Database := MyDatabase;
query.Transaction := MyTransaction;
query.SQL.Text := 'select CustomerID, FullName, Active from Customer where

→˓FullName = :FullName and Active = :Active';

customerParams := TCustomerParams.Create;
try

customerParams.FullName := 'John Doe';
customerParams.Active := True;

query.Params.Apply(customerParams);
query.Open;

{ ... }
finally

FreeAndNil(customerParams);
end;

finally
FreeAndNil(query);

end;
end;

2.4 FieldName and ParamName attributes

TODO: explain how these are used

2.3. Writing parameters 5



Dainty Documentation

Note that ParamName and FieldName are aliases for the same attribute and can be used interchangeably. Pick
whichever one makes the most sense for the object in question.

6 Chapter 2. Getting started


	Introduction
	Key features

	Getting started
	Including the source
	Reading a dataset
	Writing parameters
	FieldName and ParamName attributes


